Spin S=2 AKLT Model¶
2x1 and 2x2 unit cell¶
- class models.akltS2.AKLTS2(global_args=<config.GLOBALARGS object>)[source]¶
- Parameters:
global_args (GLOBALARGS) – global configuration
Build AKLT S=2 Hamiltonian, equivalent to projector from product of two S=2 DOFs to S=4 DOF
\[H = \sum_{<ij>} h_{ij},\ \ \ h_{ij}= \frac{1}{14} \vec{S}_i\cdot\vec{S}_j + \frac{7}{10} (\vec{S}_i\cdot\vec{S}_j)^2 + \frac{7}{45} (\vec{S}_i\cdot\vec{S}_j)^3 + \frac{1}{90} (\vec{S}_i\cdot\vec{S}_j)^4\]where <ij> denote nearest neighbours.
- energy_2x1_1x2(state, env, **kwargs)[source]¶
- Parameters:
- Returns:
energy per site
- Return type:
float
We assume iPEPS with 2x1 unit cell with tensors A, B and bipartite tiling or 2x2 unit cell containing four tensors A, B, C, and D with a simple PBC tiling:
A B A B or A B A B B A B A C D C D A B A B A B A B B A B A C D C D
Taking the reduced density matrix \(\rho_{2x1}\) (\(\rho_{1x2}\)) of 2x1 (1x2) cluster given by
rdm.rdm2x1()
(rdm.rdm1x2()
) with indexing of sites as follows \(s_0,s_1;s'_0,s'_1\) for both types of density matrices:rdm2x1 rdm1x2 s0--s1 s0 | s1
and without assuming any symmetry on the indices of individual tensors a following set of terms has to be evaluated in order to compute energy-per-site for the case of 2x1 unit cell with bipartite tiling:
0 0 1--A--3 1--B--3 2 2 A B 0 0 2 2 1--B--3 1--A--3 A--3 1--B, 0 0 2 2 , terms B--3 1--A, and B, A
and for the case of 2x2 unit cell:
0 0 0 1--A--3 1--B--3 1--A--3 2 2 2 0 0 0 1--C--3 1--D--3 1--C--3 2 2 2 A--3 1--B, A B C D 0 0 B--3 1--A, 2 2 2 2 1--A--3 1--B--3 C--3 1--D, 0 0 0 0 2 2 , terms D--3 1--C, and C, D, A, B
- eval_obs(state, env)[source]¶
- Parameters:
- Returns:
expectation values of observables, labels of observables
- Return type:
list[float], list[str]
Computes the following observables in order
average magnetization over the unit cell,
magnetization for each site in the unit cell
\(\langle S^z \rangle,\ \langle S^+ \rangle,\ \langle S^- \rangle\) for each site in the unit cell
nearest-neighbour spin-spin correlations on non-equivalent bonds
where the on-site magnetization is defined as
\[m = \sqrt{ \langle S^z \rangle^2+\langle S^x \rangle^2+\langle S^y \rangle^2 }\]
1x1 C4v¶
- class models.akltS2.AKLTS2_C4V_BIPARTITE(global_args=<config.GLOBALARGS object>)[source]¶
- Parameters:
global_args (GLOBALARGS) – global configuration
Build AKLT S=2 Hamiltonian, equivalent to projector from product of two S=2 DOFs to S=4 DOF
\[H = \sum_{<ij>} h_{ij},\ \ \ h_{ij}= \frac{1}{14} \vec{S}_i\cdot\vec{S}_j + \frac{7}{10} (\vec{S}_i\cdot\vec{S}_j)^2 + \frac{7}{45} (\vec{S}_i\cdot\vec{S}_j)^3 + \frac{1}{90} (\vec{S}_i\cdot\vec{S}_j)^4\]where <ij> denote nearest neighbours.
- energy_1x1(state, env_c4v, **kwargs)[source]¶
- Parameters:
- Returns:
energy per site
- Return type:
float
We assume 1x1 C4v iPEPS which tiles the lattice with a bipartite pattern composed of two tensors A, and B=RA, where R appropriately rotates the physical Hilbert space of tensor A on every “odd” site:
1x1 C4v => rotation R => BIPARTITE A A A A A B A B A A A A B A B A A A A A A B A B A A A A B A B A
Due to C4v symmetry it is enough to construct just a single nearest-neighbour reduced density matrix
\[e= \langle \mathcal{h} \rangle = Tr(\rho_{2x1} \mathcal{h})\]
- eval_corrf_DD_H(state, env_c4v, dist, verbosity=0)[source]¶
- Parameters:
- Returns:
dictionary with horizontal dimer-dimer correlation function
- Return type:
dict(str: torch.Tensor)
Evaluate horizontal dimer-dimer correlation functions
\[\langle(\mathbf{S}(r+3).\mathbf{S}(r+2))(\mathbf{S}(1).\mathbf{S}(0))\rangle\]up to r =
dist
.
- eval_corrf_SS(state, env_c4v, dist)[source]¶
- Parameters:
- Returns:
dictionary with full and spin-resolved spin-spin correlation functions
- Return type:
dict(str: torch.Tensor)
Evaluate spin-spin correlation functions \(\langle\mathbf{S}(r).\mathbf{S}(0)\rangle\) up to r =
dist
.
- eval_obs(state, env_c4v)[source]¶
- Parameters:
- Returns:
expectation values of observables, labels of observables
- Return type:
list[float], list[str]
Computes the following observables in order
magnetization
\(\langle S^z \rangle,\ \langle S^+ \rangle,\ \langle S^- \rangle\)
where the on-site magnetization is defined as
\[m = \sqrt{ \langle S^z \rangle^2+\langle S^x \rangle^2+\langle S^y \rangle^2 }\]