Source code for models.abelian.su3_kagome

from math import sqrt
import itertools
import numpy as np
import torch
import yast.yast as yast
import config as cfg
import groups.su3_abelian as su3
from ctm.generic_abelian.rdm import _cast_to_real
import ctm.pess_kagome_abelian.rdm_kagome as rdm_kagome


[docs]class KAGOME_SU3_U1xU1(): def __init__(self, settings, j=0.0, k=1.0, h=0.0, global_args=cfg.global_args): r""" :param j: nearest-neighbour pairing :type j: int :param k: real part of triangle exchange :type k: float :param h: imaginary part of triangle exchange :type h: float :param settings: YAST configuration :type settings: NamedTuple or SimpleNamespace (TODO link to definition) :param global_args: global configuration :type global_args: GLOBALARGS The SU(3) Hamiltonian on Kagome lattice .. math:: H = J \sum_{\langle ij \rangle} P_{ij} + K \sum_{t_{up},t_{down}} (P_{ijk} + P^{-1}_{ijk}) + ih \sum_{t_{up},t_{down}} (P_{ijk} - P^{-1}_{ijk}) or in parametrization through angles .. math:: H = cos \phi \sum_{\langle ij \rangle} P_{ij} + sin \phi \sum_{t_{up},t_{down}} exp(i\theta) P_{ijk} + exp(-i\theta)P^{-1}_{ijk} where :math:`J = cos \phi,\ K = sin \phi cos \theta,\ h= sin \phi sin \theta`. The :math:`\phi= 0.5\pi` and :math:`\theta=0` corresponds to the AKLT point. """ assert settings.sym.NSYM==2, "U(1)xU(1) abelian symmetry is assumed" self.engine= settings self.dtype= settings.default_dtype self.device='cpu' if not hasattr(settings, 'device') else settings.device self.phys_dim = 3 self.j = j # self.k = k # self.h = h # 3-site ring exchange coupling constant (imaginary part) # For now, only one-site self.obs_ops= self.get_obs_ops() self.id2, self.id3, self.perm2, self.perm2xI, \ self.perm2_tri, self.perm3_l, self.perm3_r,\ self.h2_tri, self.h3_tri, self.h_tri = self.get_h() def get_obs_ops(self): obs_ops = dict() irrep = su3.SU3_DEFINING_U1xU1(self.engine) obs_ops["tz"] = irrep.TZ() obs_ops["tp"] = irrep.TP() obs_ops["tm"] = irrep.TM() obs_ops["vp"] = irrep.VP() obs_ops["vm"] = irrep.VM() obs_ops["up"] = irrep.UP() obs_ops["um"] = irrep.UM() obs_ops["y"] = irrep.Y() obs_ops["CW"]= irrep.Cartan_Weyl() return obs_ops def get_h(self): irrep= su3.SU3_DEFINING_U1xU1(self.engine) id2= yast.tensordot(irrep.I(),irrep.I(),([],[])).transpose(axes=(0,2,1,3)) id3= yast.tensordot(id2, irrep.I(),([],[])).transpose(axes=(0,1,4,2,3,5)) perm2 = 2 * irrep.C1() + (1./3) * id2 perm2 = perm2.remove_zero_blocks(rtol=1e-14, atol=0) # 0 1 # |-P2-| 0 1 2 # 2 3 => 2<->3 => |--P3--| # 0 1->3 3 4 5 # |-P2-| # 2->4 3->5 perm3_l = yast.tensordot(perm2, perm2, ([3],[0])).transpose(axes=(0,1,3,2,4,5)) perm3_r = yast.tensordot(perm2, perm2, ([3],[1])).transpose(axes=(0,3,1,2,4,5)) # 0 1 0->4 4->2 0 1 2 # |-P2-| (x) I => 2->3 => |--P2xI--| # 2 3 1->5 3->4 3 4 5 perm2xI= yast.tensordot(perm2, irrep.I(), ([],[])).transpose(axes=(0,1,4,2,3,5)) perm2_tri = perm2xI + perm2xI.transpose(axes=(2,0,1,5,3,4)) \ + perm2xI.transpose(axes=(0,2,1,3,5,4)) h2_tri = self.j * perm2_tri h3_tri = (self.k + self.h * 1j) * perm3_l + (self.k - self.h * 1j) * perm3_r h_tri = (h2_tri + h3_tri) return id2, id3, perm2, perm2xI, perm2_tri, perm3_l, perm3_r, h2_tri, h3_tri, h_tri
[docs] def eval_obs(self, state, env, force_cpu=False, **kwargs): r""" :param state: wavefunction :param env: CTM environment :type state: IPEPS_KAGOME_ABELIAN :type env: ENV_ABELIAN :param force_cpu: perform computation on CPU :type force_cpu: bool :return: expectation values of observables, labels of observables :rtype: list[float], list[str] Evaluate observables for IPESS_KAGOME wavefunction. In particular * average nearest-neighbour pairing on up and down triangles * chiralities on up and down triangles * vector of spontaneous magnetization :math:`\langle \vec{S} \rangle` for each site and its length :math:`m=|\langle \vec{S} \rangle|` * nearest-neighbour pairings on up and down triangles The observables on down triangle are evaluated on 1x1 subsystem, while observables on up triangle are evaluated on 2x2 subsystem. """ chirality = 1j * (self.perm3_l - self.perm3_r) obs = dict() with torch.no_grad(): norm = rdm_kagome.trace1x1_dn_kagome((0,0), state, env, self.id3).to_number() norm = _cast_to_real(norm, **kwargs) obs["chirality_dn"] = rdm_kagome.trace1x1_dn_kagome((0,0), state, env,\ chirality).to_number() / norm obs["chirality_dn"] = _cast_to_real(obs["chirality_dn"], **kwargs) # obs["avg_bonds_dn"] = rdm_kagome.trace1x1_dn_kagome((0,0), state, env,\ # self.perm2_tri).to_number() / norm # obs["avg_bonds_dn"] = _cast_to_real(obs["avg_bonds_dn"]) / 3.0 obs["P01_dn"] = rdm_kagome.trace1x1_dn_kagome((0,0), state, env,\ self.perm2xI).to_number() / norm obs["P01_dn"] = _cast_to_real(obs["P01_dn"], **kwargs) obs["P12_dn"] = rdm_kagome.trace1x1_dn_kagome((0,0), state, env,\ self.perm2xI.transpose(axes=(2,0,1,5,3,4))).to_number() / norm obs["P12_dn"] = _cast_to_real(obs["P12_dn"], **kwargs) obs["P20_dn"] = rdm_kagome.trace1x1_dn_kagome((0,0), state, env,\ self.perm2xI.transpose(axes=(0,2,1,3,5,4))).to_number() / norm obs["P20_dn"] = _cast_to_real(obs["P20_dn"], **kwargs) rdm2x2_ring = rdm_kagome.rdm2x2_up_triangle_open((0,0), state, env,\ force_cpu=force_cpu, **kwargs) obs["chirality_up"] = yast.tensordot(rdm2x2_ring, chirality,\ ([0,1,2,3,4,5], [3,4,5,0,1,2])).to_number() obs["chirality_up"] = _cast_to_real(obs["chirality_up"], **kwargs) # obs["avg_bonds_up"] = yast.tensordot(rdm2x2_ring, self.perm2_tri,\ # ([0,1,2,3,4,5], [3,4,5,0,1,2])).to_number() # obs["avg_bonds_up"] = _cast_to_real(obs["avg_bonds_up"]) / 3.0 obs["P01_up"] = yast.tensordot(rdm2x2_ring, self.perm2xI,\ ([0,1,2,3,4,5], [3,4,5,0,1,2])).to_number() obs["P01_up"] = _cast_to_real(obs["P01_up"], **kwargs) obs["P12_up"] = yast.tensordot(rdm2x2_ring, self.perm2xI.transpose(axes=(2,0,1,5,3,4)),\ ([0,1,2,3,4,5], [3,4,5,0,1,2])).to_number() obs["P12_up"] = _cast_to_real(obs["P12_up"], **kwargs) obs["P20_up"] = yast.tensordot(rdm2x2_ring, self.perm2xI.transpose(axes=(0,2,1,3,5,4)),\ ([0,1,2,3,4,5], [3,4,5,0,1,2])).to_number() obs["P20_up"] = _cast_to_real(obs["P20_up"], **kwargs) obs.update(self.eval_generators(state, env, force_cpu=force_cpu, **kwargs)) # prepare list with labels and values obs_labels = ["m2_A", "m2_B", "m2_C", "chirality_dn", "chirality_up"]\ + ["P01_dn", "P12_dn", "P20_dn", "P01_up", "P12_up", "P20_up" ] obs_values = [obs[label] for label in obs_labels] return obs_values, obs_labels
[docs] def eval_obs_2x2subsystem(self, state, env, force_cpu=False, **kwargs): r""" :param state: wavefunction :param env: CTM environment :type state: IPEPS_KAGOME_ABELIAN :type env: ENV_ABELIAN :param force_cpu: perform computation on CPU :type force_cpu: bool :return: expectation values of observables, labels of observables :rtype: list[float], list[str] Evaluate observables for IPESS_KAGOME_ABELIAN wavefunction. In particular * energy contributions from up and down triangle * average nearest-neighbour pairing on up and down triangles * chiralities on up and down triangles * vector of spontaneous magnetization :math:`\langle \vec{S} \rangle` for each site and its length :math:`m=|\langle \vec{S} \rangle|` The observables on both down triangle and up triangle are evaluated on 2x2 subsystem. """ chirality = 1j * (self.perm3_l - self.perm3_r) obs = dict() with torch.no_grad(): obs["chirality_dn"],_ = rdm_kagome.rdm2x2_dn_triangle_with_operator((0,0),\ state, env, chirality,force_cpu=force_cpu,**kwargs).to_number() obs["chirality_dn"] = _cast_to_real(obs["chirality_dn"], **kwargs) obs["e_t_dn"],_ = rdm_kagome.rdm2x2_dn_triangle_with_operator((0,0), state,\ env, self.h_tri,force_cpu=force_cpu,**kwargs).to_number() obs["e_t_dn"] = _cast_to_real(obs["e_t_dn"], **kwargs) obs["avg_bonds_dn"],_ = rdm_kagome.rdm2x2_dn_triangle_with_operator((0,0),\ state, env, self.perm2_tri, force_cpu=force_cpu,**kwargs).to_number() obs["avg_bonds_dn"] = _cast_to_real(obs["avg_bonds_dn"], **kwargs)/3 rdm2x2_ring = rdm_kagome.rdm2x2_up_triangle_open((0,0), state, env,\ force_cpu=force_cpu,**kwargs) obs["chirality_up"] = yast.tensordot(rdm2x2_ring, chirality,\ ([0,1,2,3,4,5],[3,4,5,0,1,2])).to_number() obs["chirality_up"] = _cast_to_real(obs["chirality_up"], **kwargs) obs["e_t_up"] = yast.tensordot(rdm2x2_ring, self.h_tri,\ ([0,1,2,3,4,5],[3,4,5,0,1,2])).to_number() obs["e_t_up"] = _cast_to_real(obs["e_t_up"], **kwargs) obs["avg_bonds_up"] = yast.tensordot(rdm2x2_ring, self.perm2_tri, \ ([0,1,2,3,4,5],[3,4,5,0,1,2])).to_number() obs["avg_bonds_up"] = _cast_to_real(obs["avg_bonds_up"], **kwargs)/3 obs.update(self.eval_generators(state, env, force_cpu=force_cpu, **kwargs)) # prepare list with labels and values obs_labels = ["e_t_dn","e_t_up","avg_bonds_dn","avg_bonds_up","chirality_dn","chirality_up"]\ + ["m2_A", "m2_B", "m2_C"] obs_values = [obs[label] for label in obs_labels] return obs_values, obs_labels
[docs] def energy_down_t_1x1subsystem(self, state, env, force_cpu=False, **kwargs): r""" :param state: wavefunction :param env: CTM environment :type state: IPEPS_KAGOME_ABELIAN :type env: ENV_ABELIAN :param force_cpu: perform computation on CPU :type force_cpu: bool :return: energy per site :rtype: float Evaluate energy contribution from down triangle within 1x1 subsystem embedded in environment, see :meth:`ctm.pess_kagome_abelian.rdm_kagome.trace1x1_dn_kagome`. """ norm = rdm_kagome.trace1x1_dn_kagome((0,0), state, env, self.id3).to_number() energy_dn = rdm_kagome.trace1x1_dn_kagome((0,0), state, env, \ self.h_tri).to_number() / norm energy_dn = _cast_to_real(energy_dn, **kwargs) return energy_dn
[docs] def energy_triangles_2x2subsystem(self, state, env, force_cpu=False, **kwargs): r""" :param state: wavefunction :param env: CTM environment :type state: IPEPS_KAGOME_ABELIAN :type env: ENV_ABELIAN :param force_cpu: perform computation on CPU :type force_cpu: bool :return: energy contributions from down and up triangle :rtype: float, float Evaluate energy contributions from down triangle within 2x2 subsystem embedded in environment, and from upper triangle embedded in 2x2 environment. See :meth:`ctm.pess_kagome_abelian.rdm_kagome.rdm2x2_dn_triangle_with_operator` and :meth:`ctm.pess_kagome_abelian.rdm_kagome.rdm2x2_kagome` respectively. """ # intra-cell (down) energy_dn,_ = rdm_kagome.rdm2x2_dn_triangle_with_operator(\ (0, 0), state, env, self.h_tri, force_cpu=force_cpu, **kwargs) energy_dn= energy_dn.to_number() energy_dn= _cast_to_real(energy_dn, **kwargs) # inter-cell (up) rdm2x2_up = rdm_kagome.rdm2x2_up_triangle_open(\ (0,0), state, env, force_cpu=force_cpu, sym_pos_def=False, **kwargs) energy_up= yast.tensordot(rdm2x2_up, self.h_tri,([0,1,2,3,4,5],[3,4,5,0,1,2])) energy_up= energy_up.to_number() energy_up= _cast_to_real(energy_up, **kwargs) return energy_dn, energy_up
[docs] def energy_per_site_2x2subsystem(self,state,env,force_cpu=False, **kwargs): r""" :param state: wavefunction :param env: CTM environment :type state: IPEPS_KAGOME_ABELIAN. :type env: ENV_ABELIAN :param force_cpu: perform computation on CPU :type force_cpu: bool :return: energy per site :rtype: float Evaluate energy per site from contributions from up and down triangle. See :meth:`energy_triangles_2x2subsystem`. """ e_down, e_up= self.energy_triangles_2x2subsystem(state, env, force_cpu=force_cpu,\ **kwargs) e_per_site= (e_down+e_up)/3 return e_per_site
[docs] def eval_generators(self, state, env, force_cpu=False): r""" :param state: wavefunction :param env: CTM environment :type state: IPEPS_KAGOME_ABELIAN. :type env: ENV_ABELIAN :param force_cpu: perform computation on CPU :type force_cpu: bool :return: expectation value of SU(3) generators in Cartan-Weyl basis :rtype: dict(str : float) Evaluate generators in Cartan-Weyl basis (in fundamental irrep) of su(3). The expectation values of generators are ordered as [T^+, T^-, T^z, V^+, V^-, U^+, U^-, Y]. Compute the length of the vector of spontaneous magnetization, playing the role of :math:`m^2 = |<\\vec{S}>|` in case of SU(2) models. The keys "A", "B", and "C" of returned dict hold length-8 vectors with expectation values of Cartan-Weyl generators on each of sites "A", "B", and "C". The keys "m2_A", "m2_B", and "m2_C" hold expectation values of the lengths of vectors :math:`|<\\vec{T}>|` where Ts are generators in Gell-Mann basis. """ gen_lr= [(0,"tp"), (1,"tm"), (3,"vp"), (4,"vm"), (5,"up"), (6,"um")] gen_center= [(2,"tz"), (7,"y")] irrep= su3.SU3_DEFINING_U1xU1(self.engine) gens = {"A": np.zeros(8, dtype=self.dtype), "B": np.zeros(8, dtype=self.dtype), "C": np.zeros(8, dtype=self.dtype)} # vector of su(3) generators in Cartan-Weyl basis CW= self.obs_ops["CW"] with torch.no_grad(): for site in ["A","B","C"]: rdm_1site= rdm_kagome.rdm1x1_kagome((0,0), state, env, sites_to_keep=(site),\ force_cpu=force_cpu) obs_CW= yast.tensordot( rdm_1site, CW, ([0,1],[2,1]) ) # retrieve expectation values of generators by global charge of individual # generators for i,g_id in gen_lr: # identify lowering and raising operators if self.obs_ops[g_id].get_tensor_charge() in obs_CW.get_blocks_charge(): gens[site][i]= obs_CW[self.obs_ops[g_id].get_tensor_charge()].item() # identify center center_charge= self.obs_ops[gen_center[0][1]].get_tensor_charge() if center_charge in obs_CW.get_blocks_charge(): # i indexes expectation value inside block of center charge. The expectation # value is then mapped back to its position in Cartan-Weyl basis for i, g_index_g_id in enumerate(gen_center): gens[site][g_index_g_id[0]]= obs_CW[center_charge][i] m2= yast.tensordot(irrep.G(), obs_CW, ([1],[0])) m2= yast.tensordot(obs_CW, m2, ([0],[0])).to_number() gens[f"m2_{site}"]= m2 return gens
# def eval_C2(self, state, env, force_cpu=False): # pd = self.phys_dim # idp3 = torch.eye(pd**3, dtype=self.dtype, device=self.device) # irrep_su3_def = su3.SU3_DEFINING(dtype=self.dtype, device=self.device) # c2 = irrep_su3_def.C2() # c2_list = dict({"C2_dn": 0., "C2_up": 0.}) # with torch.no_grad(): # norm = rdm_kagome.trace1x1_dn_kagome((0,0), state, env, idp3) # c2_list["C2_dn"] = rdm_kagome.trace1x1_dn_kagome((0,0), state, env, c2) / norm # rdm2x2_up = rdm_kagome.rdm2x2_kagome((0,0), state, env, sites_to_keep_00=(),\ # sites_to_keep_10=('B'),sites_to_keep_01=('A'), sites_to_keep_11=('C')) # c2_list["C2_up"] = torch.einsum('ijlabd,abdijl', rdm2x2_up, c2) # return c2_list # def eval_C1(self, state, env, force_cpu=False): # pd = self.phys_dim # idp = torch.eye(pd, dtype=self.dtype, device=self.device) # idp3 = torch.eye(pd**3, dtype=self.dtype, device=self.device) # irrep_su3_def = su3.SU3_DEFINING(dtype=self.dtype, device=self.device) # c1 = irrep_su3_def.C1() # c1_dict = dict({"C1_AB_dn": 0., "C1_BC_dn": 0., "C1_AC_dn": 0.,\ # "C1_AB_up": 0., "C1_BC_up": 0., "C1_AC_up": 0.}) # with torch.no_grad(): # norm = rdm_kagome.trace1x1_dn_kagome((0,0), state, env, idp3) # c1_dict["C1_AB_dn"] = rdm_kagome.trace1x1_dn_kagome((0,0), state, env,\ # torch.einsum('ijab,kc->ijkabc', c1, idp)) / norm # c1_dict["C1_BC_dn"] = rdm_kagome.trace1x1_dn_kagome((0,0), state, env,\ # torch.einsum('jkbc,ia->ijkabc', c1, idp)) / norm # c1_dict["C1_AC_dn"] = rdm_kagome.trace1x1_dn_kagome((0,0), state, env,\ # torch.einsum('ikac,jb->ijkabc', c1, idp)) / norm # rdm2x2_ab = rdm_kagome.rdm2x2_kagome((0,0), state, env, sites_to_keep_00=(),\ # sites_to_keep_10=('B'),sites_to_keep_01=('A'), sites_to_keep_11=()) # c1_dict["C1_AB_up"] = torch.einsum('ilad,ilad', rdm2x2_ab, c1) # rdm1x2_bc = rdm_kagome.rdm1x2_kagome((0,0), state, env, sites_to_keep_00=('B'),\ # sites_to_keep_01=('C')) # c1_dict["C1_BC_up"] = torch.einsum('ijab,ijab', rdm1x2_bc, c1) # rdm2x1_ac = rdm_kagome.rdm2x1_kagome((0,0), state, env, sites_to_keep_00=('A'),\ # sites_to_keep_10=('C')) # c1_dict["C1_AC_up"] = torch.einsum('ijab,ijab', rdm2x1_ac, c1) # c1_dict["total_C1_dn"] = c1_dict["C1_AB_dn"] + c1_dict["C1_BC_dn"] + c1_dict["C1_AC_dn"] # c1_dict["total_C1_up"] = c1_dict["C1_AB_up"] + c1_dict["C1_BC_up"] + c1_dict["C1_AC_up"] # return c1_dict