Source code for models.j1j2lambda

import torch
import groups.su2 as su2
import config as cfg
from ctm.generic.env import ENV
from ctm.generic import rdm
from ctm.generic import corrf
from ctm.one_site_c4v.env_c4v import ENV_C4V
from ctm.one_site_c4v import rdm_c4v
from ctm.one_site_c4v import corrf_c4v
from math import sqrt
import itertools

def _cast_to_real(t):
    return t.real if t.is_complex() else t

[docs]class J1J2LAMBDA_C4V_BIPARTITE(): def __init__(self, j1=1.0, j2=0, j3=0, hz_stag= 0.0, delta_zz=1.0, lmbd=0, \ global_args=cfg.global_args): r""" :param j1: nearest-neighbour interaction :param j2: next nearest-neighbour interaction :param j3: next-to-next nearest-neighbour interaction :param hz_stag: staggered magnetic field :param delta_zz: easy-axis (nearest-neighbour) anisotropy :param lmbd: chiral 4-site (plaquette) interaction :type lmbd: float :param global_args: global configuration :type j1: float :type j2: float :type j3: float :type hz_stag: float :type detla_zz: float :type global_args: GLOBALARGS Build Spin-1/2 :math:`J_1-J_2-J_3-\lambda` Hamiltonian .. math:: H = J_1\sum_{<i,j>} \mathbf{S}_i.\mathbf{S}_j + J_2\sum_{<<i,j>>} \mathbf{S}_i.\mathbf{S}_j + J_3\sum_{<<<i,j>>>} \mathbf{S}_i.\mathbf{S}_j + i\lambda \sum_p P_p - P^{-1}_p on the square lattice. Where the first sum runs over the pairs of sites `i,j` which are nearest-neighbours (denoted as `<.,.>`), the second sum runs over pairs of sites `i,j` which are next nearest-neighbours (denoted as `<<.,.>>`), and the last sum runs over pairs of sites `i,j` which are next-to-next nearest-neighbours (denoted as `<<<.,.>>>`). Running over all plaquettes `p`, the chiral term P permutes spins on the plaquette in clockwise order and its inverse P^{-1} in anti-clockwise order. """ self.dtype=global_args.torch_dtype assert torch.rand(1, dtype=self.dtype).is_complex(), "Invalid dtype: J1-J2-Lambda "\ +" requires complex numbers" self.device=global_args.device self.phys_dim=2 self.j1=j1 self.j2=j2 self.j3=j3 self.lmbd= lmbd self.hz_stag=hz_stag self.delta_zz=delta_zz self.obs_ops = self.get_obs_ops() s2 = su2.SU2(self.phys_dim, dtype=self.dtype, device=self.device) id2= torch.eye(self.phys_dim**2,dtype=self.dtype,device=self.device) id2= id2.view(tuple([self.phys_dim]*4)).contiguous() expr_kron = 'ij,ab->iajb' self.SS_delta_zz= self.delta_zz*torch.einsum(expr_kron,s2.SZ(),s2.SZ()) + \ 0.5*(torch.einsum(expr_kron,s2.SP(),s2.SM()) \ + torch.einsum(expr_kron,s2.SM(),s2.SP())) self.SS= torch.einsum(expr_kron,s2.SZ(),s2.SZ()) + \ 0.5*(torch.einsum(expr_kron,s2.SP(),s2.SM()) \ + torch.einsum(expr_kron,s2.SM(),s2.SP())) hz_2x1_nn= torch.einsum(expr_kron,s2.SZ(),s2.I())+torch.einsum(expr_kron,s2.I(),-s2.SZ()) rot_op= s2.BP_rot() SS_rot= torch.einsum('ki,kjcb,ca->ijab',rot_op,self.SS,rot_op) SS_delta_zz_rot= torch.einsum('ki,kjcb,ca->ijab',rot_op,self.SS_delta_zz,rot_op) hz_2x1_rot= torch.einsum('ki,kjcb,ca->ijab',rot_op,hz_2x1_nn,rot_op) self.SS_rot= SS_rot.contiguous() self.SS_delta_zz_rot= SS_delta_zz_rot.contiguous() self.hz_2x1_rot= hz_2x1_rot.contiguous() h2x2_SS_delta_zz= torch.einsum('ijab,klcd->ijklabcd',self.SS_delta_zz,id2) # nearest neighbours h2x2_SS= torch.einsum('ijab,klcd->ijklabcd',self.SS,id2) # next-nearest neighbours # 0 1 0 1 0 x x x x 1 # 2 3 ... x x + 2 x + 2 3 + x 3 hp= 0.5*self.j1*(h2x2_SS_delta_zz + h2x2_SS_delta_zz.permute(0,2,1,3,4,6,5,7)\ + h2x2_SS_delta_zz.permute(2,3,0,1,6,7,4,5) + h2x2_SS_delta_zz.permute(3,1,2,0,7,5,6,4)) \ + self.j2*(h2x2_SS.permute(0,3,2,1,4,7,6,5) + h2x2_SS.permute(2,1,0,3,6,5,4,7))\ - 0.25*self.hz_stag*torch.einsum('ia,jb,kc,ld->ijklabcd',s2.SZ(),-s2.SZ(),-s2.SZ(),s2.SZ()) hp= torch.einsum('xj,yk,ixylauvd,ub,vc->ijklabcd',rot_op,rot_op,hp,rot_op,rot_op) self.hp= hp.contiguous() # chiral term # build permutation operator i->j->k->l->i P12= torch.as_tensor([[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]], \ dtype=self.dtype, device=self.device) P12= P12.view(2,2,2,2) # 0<->1 , Id, Id P12II= torch.einsum('abij,cdkl->abcdijkl',P12, id2) PI12I= P12II.permute(3,0,1,2, 7,4,5,6).contiguous() PII12= P12II.permute(2,3,0,1, 6,7,4,5).contiguous() # Id, Id, 2<-3> # Id, 1<->2, Id # 0<->1, Id, Id P4= torch.tensordot(PI12I, P12II, ([4,5,6,7],[0,1,2,3])) P4= torch.tensordot(PII12, P4, ([4,5,6,7],[0,1,2,3])) chiral_term= 1.0j*( P4 - P4.view(16,16).t().view(2,2,2,2,2,2,2,2) ) # spins are ordered as s0 s1 hence, to be compatible with 2x2 RDM permute # s2 s3 # # s0 s1 => s0 s1 # s2 s3 s3 s2 chiral_term= chiral_term.permute(0,1,3,2, 4,5,7,6) chiral_term= torch.einsum('xj,yk,ixylauvd,ub,vc->ijklabcd',rot_op,rot_op,chiral_term,\ rot_op,rot_op) self.chiral_term= chiral_term.contiguous() self.hp_chiral= self.lmbd*chiral_term def get_obs_ops(self): obs_ops = dict() s2 = su2.SU2(self.phys_dim, dtype=self.dtype, device=self.device) obs_ops["sz"]= s2.SZ() obs_ops["sp"]= s2.SP() obs_ops["sm"]= s2.SM() return obs_ops
[docs] def energy_1x1(self,state,env_c4v,force_cpu=False,**kwargs): r""" :param state: wavefunction :param env_c4v: CTM c4v symmetric environment :type state: IPEPS_C4V :type env_c4v: ENV_C4V :param force_cpu: perform computation on CPU :type force_cpu: bool :return: energy per site :rtype: float Analogous to :meth:`models.j1j2.J1J2_C4V_BIPARTITE.energy_1x1`. """ rdm2x2= rdm_c4v.rdm2x2(state,env_c4v,sym_pos_def=False,\ force_cpu=force_cpu, verbosity=cfg.ctm_args.verbosity_rdm) energy_per_site= torch.einsum('ijklabcd,ijklabcd',rdm2x2,self.hp + self.hp_chiral) if abs(self.j3)>0: rdm3x1= rdm_c4v.rdm3x1(state,env_c4v,sym_pos_def=True,\ force_cpu=force_cpu, verbosity=cfg.ctm_args.verbosity_rdm) ss_3x1= torch.einsum('ijab,ijab',rdm3x1,self.SS) energy_per_site= energy_per_site + 2*self.j3*ss_3x1 energy_per_site= _cast_to_real(energy_per_site) return energy_per_site
[docs] def eval_obs(self,state,env_c4v,force_cpu=False): r""" :param state: wavefunction :param env_c4v: CTM c4v symmetric environment :type state: IPEPS_C4V :type env_c4v: ENV_C4V :return: expectation values of observables, labels of observables :rtype: list[float], list[str] Computes the following observables in order 1. magnetization 2. :math:`\langle S^z \rangle,\ \langle S^+ \rangle,\ \langle S^- \rangle` 3. :math:`\langle S.S \rangle_{NN}`, (optionally) :math:`\langle S.S \rangle_{NNNN}` 4. (optionally) :math:`\langle P - P^{-1} \rangle` where the on-site magnetization is defined as .. math:: \begin{align*} m &= \sqrt{ \langle S^z \rangle^2+\langle S^x \rangle^2+\langle S^y \rangle^2 } =\sqrt{\langle S^z \rangle^2+1/4(\langle S^+ \rangle+\langle S^- \rangle)^2 -1/4(\langle S^+\rangle-\langle S^-\rangle)^2} \\ &=\sqrt{\langle S^z \rangle^2 + 1/2\langle S^+ \rangle \langle S^- \rangle)} \end{align*} Usual spin components can be obtained through the following relations .. math:: \begin{align*} S^+ &=S^x+iS^y & S^x &= 1/2(S^+ + S^-)\\ S^- &=S^x-iS^y\ \Rightarrow\ & S^y &=-i/2(S^+ - S^-) \end{align*} """ # TODO optimize/unify ? # expect "list" of (observable label, value) pairs ? obs= dict() with torch.no_grad(): if abs(self.j3)>0: rdm3x1= rdm_c4v.rdm3x1(state,env_c4v,force_cpu=force_cpu,\ verbosity=cfg.ctm_args.verbosity_rdm) obs[f"SS3x1"]= torch.einsum('ijab,ijab',rdm3x1,self.SS) if abs(self.lmbd)>0: rdm2x2= rdm_c4v.rdm2x2(state,env_c4v,\ verbosity=cfg.ctm_args.verbosity_rdm) obs[f"ChiralT"]= torch.einsum('ijklabcd,ijklabcd',rdm2x2,self.chiral_term) rdm2x1= rdm_c4v.rdm2x1_sl(state,env_c4v,force_cpu=force_cpu,\ verbosity=cfg.ctm_args.verbosity_rdm) SS2x1= torch.einsum('ijab,ijab',rdm2x1,self.SS_rot) obs[f"SS2x1"]= _cast_to_real(SS2x1) # reduce rdm2x1 to 1x1 rdm1x1= torch.einsum('ijaj->ia',rdm2x1) rdm1x1= rdm1x1/torch.trace(rdm1x1) for label,op in self.obs_ops.items(): obs[f"{label}"]= torch.trace(rdm1x1@op) obs[f"m"]= sqrt(abs(obs[f"sz"]**2 + obs[f"sp"]*obs[f"sm"])) # prepare list with labels and values obs_labels=[f"m"]+[f"{lc}" for lc in self.obs_ops.keys()]+[f"SS2x1"] if abs(self.j3)>0: obs_labels += [f"SS3x1"] if abs(self.lmbd)>0: obs_labels += [f"ChiralT"] obs_values=[obs[label] for label in obs_labels] return obs_values, obs_labels
[docs] def eval_corrf_SS(self,state,env_c4v,dist,canonical=False,rl_0=None): r""" :param state: wavefunction :param env_c4v: CTM c4v symmetric environment :type state: IPEPS_C4V :type env_c4v: ENV_C4V :param dist: maximal distance of correlator :type dist: int :param canonical: decompose correlations wrt. to vector of spontaneous magnetization into longitudinal and transverse parts :type canonical: bool :return: dictionary with full and spin-resolved spin-spin correlation functions :rtype: dict(str: torch.Tensor) Identical to :meth:`models.j1j2.J1J2_C4V_BIPARTITE.eval_corrf_SS`. """ Sop_zxy= torch.zeros((3,self.phys_dim,self.phys_dim),dtype=self.dtype,device=self.device) Sop_zxy[0,:,:]= self.obs_ops["sz"] Sop_zxy[1,:,:]= 0.5*(self.obs_ops["sp"] + self.obs_ops["sm"]) Sop_zxy[2,:,:]= -0.5*(self.obs_ops["sp"] - self.obs_ops["sm"]) # compute vector of spontaneous magnetization if canonical: s_vec_zpm=[] rdm1x1= rdm_c4v.rdm1x1(state,env_c4v) for label in ["sz","sp","sm"]: op= self.obs_ops[label] s_vec_zpm.append(torch.trace(rdm1x1@op)) # 0) transform into zxy basis and normalize s_vec_zxy= torch.tensor([s_vec_zpm[0],0.5*(s_vec_zpm[1]+s_vec_zpm[2]),\ 0.5*(s_vec_zpm[1]-s_vec_zpm[2])],dtype=self.dtype,device=self.device) s_vec_zxy= s_vec_zxy/torch.norm(s_vec_zxy) # 1) build rotation matrix R= torch.tensor([[s_vec_zxy[0],-s_vec_zxy[1],0],[s_vec_zxy[1],s_vec_zxy[0],0],[0,0,1]],\ dtype=self.dtype,device=self.device).t() # 2) rotate the vector of operators Sop_zxy= torch.einsum('ab,bij->aij',R,Sop_zxy) # function generating properly rotated operators on every bi-partite site def get_bilat_op(op): rot_op= su2.get_rot_op(self.phys_dim, dtype=self.dtype, device=self.device) op_0= op op_rot= torch.einsum('ki,kl,lj->ij',rot_op,op_0,rot_op) def _gen_op(r): return op_rot if r%2==0 else op_0 return _gen_op Sz0szR= corrf_c4v.corrf_1sO1sO(state, env_c4v, Sop_zxy[0,:,:], \ get_bilat_op(Sop_zxy[0,:,:]), dist, rl_0=rl_0) Sx0sxR= corrf_c4v.corrf_1sO1sO(state, env_c4v, Sop_zxy[1,:,:], get_bilat_op(Sop_zxy[1,:,:]), \ dist, rl_0=rl_0) nSy0SyR= corrf_c4v.corrf_1sO1sO(state, env_c4v, Sop_zxy[2,:,:], get_bilat_op(Sop_zxy[2,:,:]), \ dist, rl_0=rl_0) res= dict({"ss": Sz0szR+Sx0sxR-nSy0SyR, "szsz": Sz0szR, "sxsx": Sx0sxR, "sysy": -nSy0SyR}) return res
[docs] def eval_corrf_DD_H(self,state,env_c4v,dist,verbosity=0): r""" :param state: wavefunction :param env_c4v: CTM c4v symmetric environment :type state: IPEPS_C4V :type env_c4v: ENV_C4V :param dist: maximal distance of correlator :type dist: int :return: dictionary with horizontal dimer-dimer correlation function :rtype: dict(str: torch.Tensor) Identical to :meth:`models.j1j2.J1J2_C4V_BIPARTITE.eval_corrf_DD_H`. """ # function generating properly rotated S.S operator on every bi-partite site rot_op= su2.get_rot_op(self.phys_dim, dtype=self.dtype, device=self.device) # (S.S)_s1s2,s1's2' with rotation applied on "first" spin s1,s1' SS_rot= torch.einsum('ki,kjcb,ca->ijab',rot_op,self.SS,rot_op) # (S.S)_s1s2,s1's2' with rotation applied on "second" spin s2,s2' op_rot= SS_rot.permute(1,0,3,2).contiguous() def _gen_op(r): return SS_rot if r%2==0 else op_rot D0DR= corrf_c4v.corrf_2sOH2sOH_E1(state, env_c4v, SS_rot, _gen_op, dist, verbosity=verbosity) res= dict({"dd": D0DR}) return res
[docs] def eval_corrf_DD_V(self,state,env_c4v,dist,verbosity=0): r""" :param state: wavefunction :param env_c4v: CTM c4v symmetric environment :type state: IPEPS_C4V :type env_c4v: ENV_C4V :param dist: maximal distance of correlator :type dist: int :return: dictionary with vertical dimer-dimer correlation function :rtype: dict(str: torch.Tensor) Identical to :meth:`models.j1j2.J1J2_C4V_BIPARTITE.eval_corrf_DD_V`. """ # function generating properly rotated S.S operator on every bi-partite site rot_op= su2.get_rot_op(self.phys_dim, dtype=self.dtype, device=self.device) # (S.S)_s1s2,s1's2' with rotation applied on "first" spin s1,s1' SS_rot= torch.einsum('ki,kjcb,ca->ijab',rot_op,self.SS,rot_op) # (S.S)_s1s2,s1's2' with rotation applied on "second" spin s2,s2' op_rot= SS_rot.permute(1,0,3,2).contiguous() def _gen_op(r): return SS_rot if r%2==0 else op_rot D0DR= corrf_c4v.corrf_2sOV2sOV_E2(state, env_c4v, SS_rot, _gen_op, dist, verbosity=verbosity) res= dict({"dd": D0DR}) return res