Source code for models.su3_kagome

import torch
import groups.su3 as su3
import config as cfg
from ctm.generic.env import ENV
from ctm.generic import corrf
from ctm.generic.rdm import _cast_to_real
from ctm.pess_kagome import rdm_kagome
from math import sqrt
from tn_interface import einsum, mm
from tn_interface import view, permute, contiguous
import numpy as np
import itertools
import warnings


[docs]class KAGOME_SU3(): def __init__(self, phys_dim=3, j=0.0, k=1.0, h=0.0, global_args=cfg.global_args): r""" :param j: nearest-neighbour pairing :type j: int :param k: real part of triangle exchange :type k: float :param h: imaginary part of triangle exchange :type h: float :param global_args: global configuration :type global_args: GLOBALARGS The SU(3) Hamiltonian on Kagome lattice .. math:: H = J \sum_{\langle ij \rangle} P_{ij} + K \sum_{t_{up},t_{down}} (P_{ijk} + P^{-1}_{ijk}) + ih \sum_{t_{up},t_{down}} (P_{ijk} - P^{-1}_{ijk}) or in parametrization through angles .. math:: H = cos \phi \sum_{\langle ij \rangle} P_{ij} + sin \phi \sum_{t_{up},t_{down}} exp(i\theta) P_{ijk} + exp(-i\theta)P^{-1}_{ijk} where :math:`J = cos \phi,\ K = sin \phi cos \theta,\ h= sin \phi sin \theta`. The :math:`\phi= 0.5\pi` and :math:`\theta=0` corresponds to the AKLT point. """ self.dtype = global_args.torch_dtype self.device = global_args.device self.phys_dim = phys_dim self.j = j # 2-site permutation coupling constant self.k = k # 3-site ring exchange coupling constant self.h = h # 3-site ring exchange coupling constantNN coupling between A & C in the same unit cell # For now, only one-site self.obs_ops = self.get_obs_ops() self.perm2_tri, self.perm3_l, self.perm3_r, self.h2_tri, self.h3_tri, self.h_tri = self.get_h() def get_obs_ops(self): obs_ops = dict() irrep_su3_def = su3.SU3_DEFINING(dtype=self.dtype, device=self.device) obs_ops["tz"] = irrep_su3_def.TZ() obs_ops["tp"] = irrep_su3_def.TP() obs_ops["tm"] = irrep_su3_def.TM() obs_ops["vp"] = irrep_su3_def.VP() obs_ops["vm"] = irrep_su3_def.VM() obs_ops["up"] = irrep_su3_def.UP() obs_ops["um"] = irrep_su3_def.UM() obs_ops["y"] = irrep_su3_def.Y() obs_ops["J"]= irrep_su3_def.J_Gell_Mann() # obs_ops["C1"] = irrep_su3_def.C1() # obs_ops["C2"] = irrep_su3_def.C2() return obs_ops def get_h(self): pd = self.phys_dim # identity operator on two spin-S spins idp = torch.eye(pd, dtype=self.dtype, device=self.device) idp2S = torch.eye(pd ** 2, dtype=self.dtype, device=self.device) irrep_su3_def = su3.SU3_DEFINING(dtype=self.dtype, device=self.device) perm2 = 2 * irrep_su3_def.C1() + idp2S.view(pd, pd, pd, pd) / 3 perm3_l = torch.einsum('ijal,lkbc->ijkabc', perm2, perm2).contiguous() perm3_r = torch.einsum('ijal,klbc->ikjabc', perm2, perm2).contiguous() perm2_tri = torch.einsum('ijab,kc->ijkabc', perm2, idp) perm2_tri += torch.einsum('ikac,jb->ijkabc', perm2, idp) perm2_tri += torch.einsum('jkbc,ia->ijkabc', perm2, idp) perm2_tri= perm2_tri.contiguous() h2_tri = (self.j * perm2_tri).contiguous() h3_tri = (self.k + self.h * 1j) * perm3_l + (self.k - self.h * 1j) * perm3_r h_tri = (h2_tri + h3_tri).contiguous() return perm2_tri, perm3_l, perm3_r, h2_tri, h3_tri, h_tri
[docs] def energy_1site(self, state, env, **kwargs): r""" :param state: wavefunction :param env: CTM environment :type state: IPEPS_KAGOME :type env: ENV :param force_cpu: perform computation on CPU :type force_cpu: bool :return: energy per site :rtype: float Evaluate energy per site from contributions from down triangle within 1x1 subsystem embedded in environment, and from upper triangle embedded in 2x2 environment. See :meth:`ctm.pess_kagome.rdm_kagome.trace1x1_dn_kagome` and :meth:`ctm.pess_kagome.rdm_kagome.rdm2x2_kagome` respectively. """ pd = self.phys_dim energy = 0.0 idp = torch.eye(pd, dtype=self.dtype, device=self.device) # intra-cell (down triangle) norm = rdm_kagome.trace1x1_dn_kagome((0,0), state, env, torch.einsum('ia,jb,kc->ijkabc', idp, idp, idp)) energy += rdm_kagome.trace1x1_dn_kagome((0,0), state, env, self.h_tri) / norm # inter-cell (up triangle) rdm2x2_ring = rdm_kagome.rdm2x2_kagome((0,0), state, env, sites_to_keep_00=('B'), sites_to_keep_10=('C'), sites_to_keep_01=(), sites_to_keep_11=('A')) energy += torch.einsum('ijlabd,lijdab', rdm2x2_ring, self.h_tri) energy_per_site = energy / (len(state.sites.items()) * 3.0) energy_per_site = _cast_to_real(energy_per_site, **kwargs) return energy_per_site
[docs] def eval_obs(self, state, env, force_cpu=False, **kwargs): r""" :param state: wavefunction :param env: CTM environment :type state: IPEPS_KAGOME :type env: ENV :param force_cpu: perform computation on CPU :type force_cpu: bool :return: expectation values of observables, labels of observables :rtype: list[float], list[str] Evaluate observables for IPESS_KAGOME wavefunction. In particular * average nearest-neighbour pairing on up and down triangles * chiralities on up and down triangles * vector of spontaneous magnetization :math:`\langle \vec{S} \rangle` for each site and its length :math:`m=|\langle \vec{S} \rangle|` The observables on down triangle are evaluated on 1x1 subsystem, while observables on up triangle are evaluated on 2x2 subsystem. """ pd = self.phys_dim chirality = 1j * (self.perm3_l - self.perm3_r) idp3 = torch.eye(pd**3, dtype=self.dtype, device=self.device) obs = dict() with torch.no_grad(): norm = rdm_kagome.trace1x1_dn_kagome((0,0), state, env, idp3) obs["chirality_dn"] = rdm_kagome.trace1x1_dn_kagome((0,0), state, env, chirality) / norm obs["chirality_dn"] = _cast_to_real(obs["chirality_dn"], **kwargs) obs["avg_bonds_dn"] = rdm_kagome.trace1x1_dn_kagome((0,0), state, env, self.perm2_tri) / norm obs["avg_bonds_dn"] = _cast_to_real(obs["avg_bonds_dn"],**kwargs) / 3.0 rdm2x2_ring = rdm_kagome.rdm2x2_up_triangle_open((0,0), state, env, force_cpu=force_cpu) obs["chirality_up"] = torch.einsum('ijlabc,ijlabc', rdm2x2_ring, chirality) obs["chirality_up"] = _cast_to_real(obs["chirality_up"], **kwargs) obs["avg_bonds_up"] = torch.einsum('ijlabc,ijlabc', rdm2x2_ring, self.perm2_tri) obs["avg_bonds_up"] = _cast_to_real(obs["avg_bonds_up"],**kwargs) / 3.0 obs.update(self.eval_generators(state, env, force_cpu=force_cpu,**kwargs)) # prepare list with labels and values obs_labels = ["avg_bonds_dn", "avg_bonds_up", "chirality_dn", "chirality_up"]\ + ["m2_A", "m2_B", "m2_C"] obs_values = [obs[label] for label in obs_labels] return obs_values, obs_labels
[docs] def eval_obs_2x2subsystem(self, state, env, force_cpu=False, **kwargs): r""" :param state: wavefunction :param env: CTM environment :type state: IPEPS_KAGOME :type env: ENV :param force_cpu: perform computation on CPU :type force_cpu: bool :return: expectation values of observables, labels of observables :rtype: list[float], list[str] Evaluate observables for IPESS_KAGOME wavefunction. In particular * energy contributions from up and down triangle * average nearest-neighbour pairing on up and down triangles * chiralities on up and down triangles * vector of spontaneous magnetization :math:`\langle \vec{S} \rangle` for each site and its length :math:`m=|\langle \vec{S} \rangle|` The observables on both down triangle and up triangle are evaluated on 2x2 subsystem. """ chirality = 1j * (self.perm3_l - self.perm3_r) obs = dict() with torch.no_grad(): obs["chirality_dn"],_ = rdm_kagome.rdm2x2_dn_triangle_with_operator((0,0), state, env, chirality,\ force_cpu=force_cpu) # obs["chirality_dn"] = _cast_to_real(obs["chirality_dn"],**kwargs) obs["e_t_dn"],_ = rdm_kagome.rdm2x2_dn_triangle_with_operator((0,0), state, env, self.h_tri,\ force_cpu=force_cpu) obs["e_t_dn"] = _cast_to_real(obs["e_t_dn"],**kwargs) obs["avg_bonds_dn"],_ = rdm_kagome.rdm2x2_dn_triangle_with_operator((0,0), state, env, self.perm2_tri,\ force_cpu=force_cpu) obs["avg_bonds_dn"] = _cast_to_real(obs["avg_bonds_dn"],**kwargs)/3 rdm2x2_ring = rdm_kagome.rdm2x2_up_triangle_open((0,0), state, env, force_cpu=force_cpu) obs["chirality_up"] = torch.einsum('ijlabc,abcijl', rdm2x2_ring, chirality) # obs["chirality_up"] = _cast_to_real(obs["chirality_up"], **kwargs) obs["e_t_up"] = torch.einsum('ijlabc,abcijl', rdm2x2_ring, self.h_tri) obs["e_t_up"] = _cast_to_real(obs["e_t_up"],**kwargs) obs["avg_bonds_up"] = torch.einsum('ijlabc,abcijl', rdm2x2_ring, self.perm2_tri) obs["avg_bonds_up"] = _cast_to_real(obs["avg_bonds_up"],**kwargs)/3 obs.update(self.eval_generators(state, env, force_cpu=force_cpu, **kwargs)) # prepare list with labels and values obs_labels = ["e_t_dn","e_t_up","avg_bonds_dn","avg_bonds_up","chirality_dn","chirality_up"]\ + ["m2_A", "m2_B", "m2_C"] obs_values = [obs[label] for label in obs_labels] return obs_values, obs_labels
[docs] def energy_down_t_1x1subsystem(self, state, env, force_cpu=False, fail_on_check=False,\ warn_on_check=True): r""" :param state: wavefunction :param env: CTM environment :type state: IPEPS_KAGOME :type env: ENV :param force_cpu: perform computation on CPU :type force_cpu: bool :return: energy per site :rtype: float Evaluate energy contribution from down triangle within 1x1 subsystem embedded in environment, see :meth:`ctm.pess_kagome.rdm_kagome.trace1x1_dn_kagome`. """ pd = self.phys_dim idp3 = torch.eye(pd**3, dtype=self.dtype, device=self.device) norm = rdm_kagome.trace1x1_dn_kagome((0,0), state, env, idp3) norm = rdm_kagome._cast_to_real(norm, fail_on_check=fail_on_check, warn_on_check=warn_on_check) energy_dn = rdm_kagome.trace1x1_dn_kagome((0,0), state, env, self.h_tri) / norm energy_dn = rdm_kagome._cast_to_real(energy_dn, fail_on_check=fail_on_check, warn_on_check=warn_on_check) return energy_dn
[docs] def energy_triangles_2x2subsystem(self, state, env, force_cpu=False): r""" :param state: wavefunction :param env: CTM environment :type state: IPEPS_KAGOME :type env: ENV :param force_cpu: perform computation on CPU :type force_cpu: bool :return: energy contributions from down and up triangle :rtype: float, float Evaluate energy contributions from down triangle within 2x2 subsystem embedded in environment, and from upper triangle embedded in 2x2 environment. See :meth:`ctm.pess_kagome.rdm_kagome.rdm2x2_dn_triangle_with_operator` and :meth:`ctm.pess_kagome.rdm_kagome.rdm2x2_kagome` respectively. """ # intra-cell (down) energy_dn, norm_dn= rdm_kagome.rdm2x2_dn_triangle_with_operator(\ (0, 0), state, env, self.h_tri, force_cpu=force_cpu) energy_dn = _cast_to_real(energy_dn) # inter-cell (up) # rdm2x2_up = rdm_kagome.rdm2x2_up_triangle_open(\ # (0,0), state, env, force_cpu=force_cpu, sym_pos_def=False) rdm2x2_up = rdm_kagome.rdm2x2_kagome(\ (0,0), state, env, sites_to_keep_00=(), sites_to_keep_10=('B'),\ sites_to_keep_01=('A'), sites_to_keep_11=('C'), force_cpu=force_cpu, sym_pos_def=False) energy_up = torch.einsum('ijlabc,abcijl', rdm2x2_up, self.h_tri) energy_up = _cast_to_real(energy_up) energy_per_site= (energy_dn + energy_up)/3 return energy_dn, energy_up
[docs] def energy_per_site_2x2subsystem(self,state,env,force_cpu=False): r""" :param state: wavefunction :param env: CTM environment :type state: IPEPS_KAGOME :type env: ENV :param force_cpu: perform computation on CPU :type force_cpu: bool :return: energy per site :rtype: float Evaluate energy per site from contributions from up and down triangle. See :meth:`energy_triangles_2x2subsystem`. """ e_down, e_up= self.energy_triangles_2x2subsystem(state, env, force_cpu=force_cpu) e_per_site= (e_down+e_up)/3 return e_per_site
def eval_generators(self, state, env, force_cpu=False, **kwargs): pd = self.phys_dim idp2= torch.eye(pd**2, dtype=self.dtype, device=self.device) idp3= torch.eye(pd**3, dtype=self.dtype, device=self.device) idp2= idp2.view(pd,pd,pd,pd) gens = {"A": torch.zeros(8, dtype=self.dtype, device=self.device), "B": torch.zeros(8, dtype=self.dtype, device=self.device), "C": torch.zeros(8, dtype=self.dtype, device=self.device)} # vector of su(3) generators in Gell-Mann basis norm= _cast_to_real(rdm_kagome.trace1x1_dn_kagome((0,0), state, env, idp3),\ who="norm 1x1_dn_kagome",**kwargs) J= self.obs_ops["J"] with torch.no_grad(): # for site_type in ['A', 'B', 'C']: # rdm1x1 = rdm_kagome.rdm1x1_kagome((0,0), state, env, sites_to_keep=(site_type)) # for i in range(J.size(0)): # gens[site_type][i]= torch.einsum('ij,ji', rdm1x1, J[i,:,:]) for i in range(J.size(0)): gens['A'][i]= _cast_to_real(rdm_kagome.trace1x1_dn_kagome((0,0), state, env,\ torch.einsum('ab,ijkl->aijbkl',J[i,:,:],idp2)),**kwargs) / norm for i in range(J.size(0)): gens['B'][i]= _cast_to_real(rdm_kagome.trace1x1_dn_kagome((0,0), state, env,\ torch.einsum('ab,ijkl->iajkbl',J[i,:,:],idp2)),**kwargs) / norm for i in range(J.size(0)): gens['C'][i]= _cast_to_real(rdm_kagome.trace1x1_dn_kagome((0,0), state, env,\ torch.einsum('ab,ijkl->ijaklb',J[i,:,:],idp2)),**kwargs) / norm for site_type in ['A', 'B', 'C']: gens[f"m2_{site_type}"]= torch.dot(gens[site_type],gens[site_type]) return gens def eval_C2(self, state, env, force_cpu=False): pd = self.phys_dim idp3 = torch.eye(pd**3, dtype=self.dtype, device=self.device) irrep_su3_def = su3.SU3_DEFINING(dtype=self.dtype, device=self.device) c2 = irrep_su3_def.C2() c2_list = dict({"C2_dn": 0., "C2_up": 0.}) with torch.no_grad(): norm = rdm_kagome.trace1x1_dn_kagome((0,0), state, env, idp3) c2_list["C2_dn"] = rdm_kagome.trace1x1_dn_kagome((0,0), state, env, c2) / norm rdm2x2_up = rdm_kagome.rdm2x2_kagome((0,0), state, env, sites_to_keep_00=(),\ sites_to_keep_10=('B'),sites_to_keep_01=('A'), sites_to_keep_11=('C')) c2_list["C2_up"] = torch.einsum('ijlabd,abdijl', rdm2x2_up, c2) return c2_list def eval_C1(self, state, env, force_cpu=False): pd = self.phys_dim idp = torch.eye(pd, dtype=self.dtype, device=self.device) idp3 = torch.eye(pd**3, dtype=self.dtype, device=self.device) irrep_su3_def = su3.SU3_DEFINING(dtype=self.dtype, device=self.device) c1 = irrep_su3_def.C1() c1_dict = dict({"C1_AB_dn": 0., "C1_BC_dn": 0., "C1_AC_dn": 0.,\ "C1_AB_up": 0., "C1_BC_up": 0., "C1_AC_up": 0.}) with torch.no_grad(): norm = rdm_kagome.trace1x1_dn_kagome((0,0), state, env, idp3) c1_dict["C1_AB_dn"] = rdm_kagome.trace1x1_dn_kagome((0,0), state, env,\ torch.einsum('ijab,kc->ijkabc', c1, idp)) / norm c1_dict["C1_BC_dn"] = rdm_kagome.trace1x1_dn_kagome((0,0), state, env,\ torch.einsum('jkbc,ia->ijkabc', c1, idp)) / norm c1_dict["C1_AC_dn"] = rdm_kagome.trace1x1_dn_kagome((0,0), state, env,\ torch.einsum('ikac,jb->ijkabc', c1, idp)) / norm rdm2x2_ab = rdm_kagome.rdm2x2_kagome((0,0), state, env, sites_to_keep_00=(),\ sites_to_keep_10=('B'),sites_to_keep_01=('A'), sites_to_keep_11=()) c1_dict["C1_AB_up"] = torch.einsum('ilad,ilad', rdm2x2_ab, c1) rdm1x2_bc = rdm_kagome.rdm1x2_kagome((0,0), state, env, sites_to_keep_00=('B'),\ sites_to_keep_01=('C')) c1_dict["C1_BC_up"] = torch.einsum('ijab,ijab', rdm1x2_bc, c1) rdm2x1_ac = rdm_kagome.rdm2x1_kagome((0,0), state, env, sites_to_keep_00=('A'),\ sites_to_keep_10=('C')) c1_dict["C1_AC_up"] = torch.einsum('ijab,ijab', rdm2x1_ac, c1) c1_dict["total_C1_dn"] = c1_dict["C1_AB_dn"] + c1_dict["C1_BC_dn"] + c1_dict["C1_AC_dn"] c1_dict["total_C1_up"] = c1_dict["C1_AB_up"] + c1_dict["C1_BC_up"] + c1_dict["C1_AC_up"] return c1_dict